Simple groups with a Sylow normalizer of order 3p

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

A Simple Classification of Finite Groups of Order p2q2

‎Suppose G is a group of order p^2q^2 where p>q are prime numbers and suppose P and Q are Sylow p-subgroups and Sylow q-subgroups of G, ‎respectively‎. ‎In this paper‎, ‎we show that up to isomorphism‎, ‎there are four groups of order p^2q^2 when Q and P are cyclic‎, ‎three groups when Q is a cyclic and P is an elementary ablian group‎, ‎p^2+3p/2+7 groups when Q is an elementary ablian group an...

متن کامل

POS-groups with some cyclic Sylow subgroups

A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y in G | o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.

متن کامل

Symmetric Powers of Modular Representations for Groups with a Sylow Subgroup of Prime Order

Let V be a representation of a finite group G over a field of characteristic p. If p does not divide the group order, then Molien’s formula gives the Hilbert series of the invariant ring. In this paper we find a replacement of Molien’s formula which works in the case that |G| is divisible by p but not by p. We also obtain formulas which give generating functions encoding the decompositions of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1979

ISSN: 0021-8693

DOI: 10.1016/0021-8693(79)90283-7